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Abstract. We analyse some of the most recent experimental scattering data for amorphous 
Ni-Ti alloys in terms of a non-additive hard-sphere (NAHS) model. 

The relevant correlation functions and structure factors are obtained by solving numeri- 
cally the Ornstein-Zernike integral equations, supplemented by the Percus-Yevick closure, 
for NiI-Til-x systems with x = 0.3, 0.4, 0.5 and 0.7. A comparison between additive and 
non-additive hard-sphere models is presented for x = 0.5. Satisfactory semi-quantitative 
agreement with experimental data is then found for the Ni,Ti, glass. 

The model is able to account for the appearance of a prepeak in the diffraction pattern 
as a natural consequence of the set-up of a chemical short-range order (CSRO) in the system. 
The usefulness of non-additive hard-sphere models for describing CSRO in metallic glasses is 
carefully discussed. 

1. Introduction 

It is well known that in most of the liquid and amorphous multi-component materials 
the atomic distribution around the atoms of each species differs from the average one 
corresponding to a completely random mixing. In a random (ideal) mixture the local 
number density of i and j atoms around an i-type atom is the same as that around a j -  
type one. On the contrary, in real systems deviations from such an ideal behaviour may 
produce a tendency for like atoms to be neighbours (homo-coordination) or a preference 
for unlike neighbours and consequent compound formation (hetero-coordination). The 
correlation in space of the resulting composition fluctuations with respect to a random 
distribution is usually called ‘chemical (or compositional) short-range order’ (CSRO) . 

When such ordering phenomena are strong enough, all the measured structural and 
thermodynamic properties show marked deviations from ideality. In particular, in some 
(liquid and amorphous) binary metallic alloys experimental evidence for a preferred 
hetero-coordination is given by an unusual prepeak in the total structure factor Sx(k) 
obtained by x-ray diffraction as a function of the wavevector k .  The origin of this prepeak 
from compositional fluctuations can be demonstrated with the help of neutron scattering 
experiments. In fact, under particular conditions, these measurements allow the deter- 
mination of the partial structure factor Scc(k) (Bhatia and Thornton 1970), which 
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contains information about concentration fluctuations of the two species: CSRO is then 
revealed by the presence of a pronounced S,,(k) peak at the same k-value of the prepeak 
observed with x-rays [this occurs, for example, in liquid Li-Pb (Ruppersberg and Hegger 
1975) and amorphous Ni-Ti alloys (Ruppersberg et a1 1980)l. 

From a theoretical point of view, the study of CSRO in compound-forming binary 
metallic alloys presents two distinct problems: (i) the choice of a good 'model', in the 
series of appropriate interaction potentials, and (ii) the calculation of the structural and 
thermodynamic properties from the assumed microscopic force laws. 

Unfortunately, the true effective interatomic potentials of metallic systems have 
rather complicated forms with oscillatory (mainly attractive) tails (Hafner 1985). An 
accurate determination of these long-range contributions is required when thermo- 
dynamic quantities are to be evaluated (Hafner 1977,1980, Pasturel et a1 1985). On the 
contrary, if we are interested only in structural properties (partial pair distribution 
functions and static structure factors), suitably simplified potentials may be used, as a 
first good approximation. In many cases, for instance, hard-sphere (HS) potentials, soft 
inverse-power repulsions or hard-core interactions with screened Coulomb (Yukawa) 
tails yield physically sensible structural results. This follows from the fact that the 
structure of a condensed phase is dominated by the short-range repulsive forces 
(excluded volume effects), whereas the long-range interactions are rarely strong enough 
to induce qualitative changes of ordering (Hafner and Kahl, 1984, Kahl and Hafner 
1985, Pasturel et a1 1985). 

In this paper we want to focus on the fact that the pair potentials of many binary 
alloys are non-additiue (Kahl and Hafner 1985). This means that the distance between 
unlike nearest neighbours is not equal to the arithmetic mean of the distances between 
like components (i.e., o12 # (oI1 + ~ ~ ~ ) / 2 ) .  Non-additivity may easily be observed from 
the partial radial distribution functions g,(r) or from the position of the first peak in the 
partial structure factor S12(k), when it does not fall exactly midway between Sl,(k) and 
S,,(k). In particular, for systems with strong hetero-coordinating tendency (such as, for 
instance, the above-mentioned liquid Li-Pb and amorphous Ni-Ti alloys), experimental 
data indicate a reduction in the distance between unlike nearest neighbours as compared 
with the average of the diameters of the pure metals. 

With all this in mind, it becomes evident that the structural features of systems with 
strong CSRO cannot be modelled by HS mixtures with additive diameters R, 
[RI ,  = (Rll + R2*)/2], Therefore, to reproduce chemical ordering effects in liquid alloys, 
some authors (Copestake et a1 1983, Hafner et a1 1984, Pasturel et a1 1985, Kahl and 
Hafner 1985, 1987) used potentials with both a repulsive short-range part and a long- 
range tail, chosen in such a way that the short-range terms are additive and non-additivity 
is generated by the long-range contributions. For instance, a simple model such as the 
symmetric Hs-Yukawa (HSY) mixture (i.e., hard spheres of equal diameter plus repulsive 
Yukawa tails between like species and attractive ones between unlike species) can really 
yield a concentration-concentration structure factor S,,(k) with a marked peak. 

In this context, the purpose of the present paper is to demonstrate that an HS 
model with non-additiue diameters is already able to reproduce CSRO, i.e., the aforesaid 
behaviour of S, , (k) ,  in amorphous binary alloys. Our aim is to investigate how CSRO 
and non-additivity are aspects related to the same physical reality and, with reference 
to amorphous Ni-Ti alloys, to show that the prepeak of S"(k) can be explained entirely 
in terms of excluded volume effects. 

As concerns the choice of a statistical-mechanical route from the assumed interatomic 
potential to the determination of the structure, we then adopt an integral equation 
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method. To our knowledge, Weeks (1977) was the first to use the Percus-Yevick (PY) 
integral equation, well known in the theory of liquids (Boublik et a1 1980), for studying 
the structure of metallic glasses by means of (additive) HS models. Clearly, the integral 
equations for liquid mixtures assume the presence of an homogeneous, isotropic phase 
and, consequently, they are unable to describe the crystalline state. Nevertheless, their 
results may be interesting for glassy systems. According to Weeks, the extension of these 
methods to the glassy state rests on the belief that the structural features of amorphous 
materials, especially those obtained by rapid quenching from the vapour or melt, are, 
in some sense, smooth extrapolations of those found in the stable fluid. 

Unfortunately, from the analytic point of view, a complete solution of the PY integral 
equation for non-additive HS mixtures is still lacking; until now, only partial exact 
expressions, relevant to some particular cases, are available in the literature (Lebowitz 
and Zomick 1971, Perry and Silbert 1979, Gazzillo 1987,1988). Therefore, in this work 
we have followed a completely numerical procedure for solving the Ornstein-Zernike 
integral equations within the PY approximation. 

The paper is arranged as follows. In 0 2 the non-additive HS model is presented and 
the basic formulae are recalled. Our numerical results, relevant to Ni-Ti alloys, are 
reported in § 3 and a comparison is made with both additive HS results and experimental 
data. Moreover, in 0 4 we give a brief critical discussion on some aspects of our work 
and its relation to other possible approaches. Finally, the main results are summarised 
in § 5. 

2. Model and formalism 

2.1. Non-additive hard-sphere mixture and integral equations 

Our model consists of a binary mixture of negatively non-additive hard spheres (NAHS). 
Defining R, to be the closest approach distance between the centres of two particles of 
species i and j (and Ri = R,,), the interaction potentials are given by 

with 

( I b )  
R12 = &(R, + R,)(1 + A) and A < 0. 

Note that R12 < ( R ,  + R2)/2,  whereas in additive HS (AHS) mixtures ( A  = 0) RI2 is 
always equal to the arithmetic mean of the diameters R1 and R,  of the two species. 
In other words, negative non-additivity (A < 0) simply means that a partial mutual 
penetration is allowed for unlike particles at contact. 

Now, the knowledge of the equilibrium properties of this NAHS model requires the 
determination of the partial pair distribution functions (or partial radial distribution 
functions, RDF) gii(r). To this aim, we solved numerically the Ornstein-Zernike (oz) 
integral equations relating the direct correlation functions (DCF) cij(r) to the total cor- 
relation functions h,(r) = gij(r) - 1, i.e., 
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supplemented by the two closures 

h, (r )  = -1 

C I J W  = 0 

r < R ,  
r > R,. 

Here pk is the (mean) number density of the kth component (in the following, p = 
p1 + p2 will be the total number density and xi = pi /p  the concentration or atomic 
fraction of species i); moreover, equations (3a) and (3b), which are needed to complete 
the specification of the unknown functions, represent, for HS systems, the (exact) core 
condition and the Percus-Yevick (PY) approximation, respectively. 

Note that, for a binary NAHS mixture, the oz relations are a system of three coupled 
integral equations with five independent parameters: p l ,  p2, R I ,  R2 and R12 (or, equiv- 
alently, p, xl, R 1 ,  R2 and A). 

In the following, the component 1 will always be identified with Ni. 

2.2. Structure factors 

Let us now recall some basic definitions, which are quite general and independent of the 
HS model and PY approximation (Lele 1984, Waseda 1984). 

The first quantity to be considered for a comparison between theory and experiment 
is the total x-ray structure factor defined by 

S ” ( 4  = Ic0”hk)/lcoh(k+ E) = (~lx,>1’2[fl(klf,(~)/(f2(~))l~l,(~> (4) 

where Foh(k) is the unnormalised coherent scattering intensity at a wavevector k ,  f , ( k )  
is the atomic scattering factor for component i, ( fZ(k) )  = X 1 x l  f f ( k )  represents a com- 
positional average and the S,(k) are partial structure factors introduced by Ashcroft and 
Langreth (1967) (hereafter referred to as AL) 

Sl,(k) = 61, + (xlx,>1’2Pfil,(k) ( 5 )  

( ~ 3 ~ ~  is the Kronecker delta and fi,(k) indicates the three-dimensional Fourier transform 

After solving the oz integral equations for the DCFS cq(r), the quantities S, (k )  are 
easily derived from the Fourier transforms e , (k )  (Ashcroft and Langreth 1967). 

However, in order to discuss the CSRO, it is convenient to take into account also an 
alternative decomposition of Sx(k) in terms of partial structure factors proposed by 
Bhatia and Thornton (1970) (hereafter referred to as BT), Le., 

of hl,(Y)). 

where SN,(k), Scc(k) and SNc(k) are called the number-number, concentration-con- 
centration and number-concentration structure factors, respectively; moreover, ( f )  = 
Z i x i f i 7  Af = fi  - f 2  and ( f 2 )  - (f)2 = x1x2 (A f )’ (remember that these quantities are k- 
dependent too). 

Starting from the following linear combinations of pair distribution functions g&r) 
(Lele 1984), 
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gNC(r) = x1x2[xlgll(r) - x2g22(r) + ( x 2  - x1)g12(r)1 

the BT partial structure factors may be expressed as 

sNN(~) = 1 + pLNN(k) = x i ~ i i ( k )  + ~ 2 ~ 2 2 ( k )  + 2 ( ~ 1 ~ 2 ) ~ ’ * ~ 1 2 ( k )  

S , c ( k ) / ( x , x , )  = 1 + PkCC(k> = X2Sll(k) + XIS22(k) - 2(X1X2)1/2S12(k) 

SNC(k) = pgNC(k) =X1X2[Sll(k) - S22(k) + (x2 ~ x l ~ s 1 2 ~ k ~ / ~ ~ l x 2 ~ 1 i 2 ~  

@a) 

(8b) 

(8c) 

(obviously, h”(r) = gNN(r) - 1). 
Equations (8) show the following short-wavelength behaviour: SNN(k+ CO) = 1, 

Scc(k+ CO) = xlxz and SNc(k-t x) = 0. It is worth noting that for a random mixture it 
results that Scc(k) = xlx2 and SNc(k) = 0 for all k values. 

ThefunctionsSNN(k) andg”(r) describe an ‘average’ atomicdistribution irrespective 
of the species concerned (the so-called topological short-range order, TSRO). 

On the other hand, CSRO can be investigated by studying the behaviour of the 
functionsgcc(r) and Scc(k). In fact, from equation (7b) it follows that gcc(r) is negative 
at distances with predominant hetero-coordination, positive for preferred homo-coor- 
dination, and zero where the atomic distribution is locally random (evidently, it becomes 
zero also when all gli(r) vanish inside the atomic cores). In Fourier reciprocal space, 
CSRO is then revealed, at some wavevector k ,  by strong deviations of Scc(k) from the 
value x1x2 corresponding to randomness. 

Finally, the cross terms SNc(k) and gNc(r) give information about concentration 
fluctuations induced by variations in the TSRO (and vice versa). 

3. Numerical results and comparison with experimental data 

Our theoretical analysis of the CSRO in Ni-Ti alloys may be divided conveniently into 
three parts. First, a comparison is made between the additive and non-additive HS model 
for Ni50Ti50, at different densities ranging from liquid-like to glassy-like values. Second, 
a NAHS mixture is used to fit experimental data of the amorphous Ni4,,T& alloy and, in 
particular, to reproduce the prepeak in the total structure factor S“(k). Finally, varying 
x in NiXTil-” models, the dependence of the structural ordering on composition is also 
examined. 

For all cases investigated, the PY integral equations were solved numerically by using 
Gillan’s algorithm (Gillan 1979, Abernethy and Gillan 1980) with a grid of 512 points 
equally spaced (Ar/R = 0.05, where the unit of length R was chosen to be 1 A). 

In passing, we recall also that numerical solutions of the oz integral equations for 
NAHS potentials have been published only for a relatively small number of cases, mainly 
concerning symmetric mixtures, i.e., binary systems with R1 = R2 and x1 = 0.5 (Nixon 
and Silbert 1984, Ballone et a1 1986, Gazzillo 1987, 1988). We are aware of results for 
only one asymmetric case with parameter values appropriate to compound-forming 
liquid alloys (Levesque et a1 1980). 

Note that, once the composition (i.e., the variable xl) is fixed, the free parameters 
become four (p, R1, Rlz, R2) in the NAHS model and three for an additive HS mixture. 
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First of all, the DCF q J ( r )  and RDF~,,(Y), together with the AL and BT partial structure 
factors, were evaluated. Then, calculating the atomic scattering factor for each species 
by means of an interpolation formula given by the International Tables for X-ray Crys- 
tallography (1969), the total structure factor S"(k) was determined according to equations 

Furthermore, we evaluated the coordination numbers and the generalised Warren 
CSRO parameter. Let us introduce the partial radial density function p,(r) = x,pg , (r ) ,  
which represents the number of j-type atoms at a distance r from an i-type atom. The 
partial coordination number 2, is the number of j atoms in the first shell of an i-type 
atom and, for HS systems, it may be defined as 

(4) or (6). 

where r,is the position of the first minimum ingii(r). Consequently, the total coordination 
number of species i, i.e., the total number of atoms in the first shell around an i-type 
atom, is approximately given by 

At this point, the generalised CSRO parameter a, may be expressed as 

a,#, = 1 - 212/(x*z) = 1 - 2 * 1 / ( X . Z )  ( I l a )  

with 

The parameter a, is a rough but useful measure of the CSRO: for a random distri- 
bution, a, vanishes, while it becomes negative (positive) for systems with preferred 
nearest neighbour hetero- (homo-)coordination. 

However, the numerical values of 2, and a, must not be taken too literally. In fact, 
numerical uncertainty in a, may be high, owing to some approximations contained in 
the previous relations. Moreover, we recall that some authors prefer a different method 
for counting the first neighbours, by using in equation (9), for all Z,, the same upper 
integration limit defined by the position of the first minimum in &N(r). Clearly, the value 
of a, depends on the definition adopted for 2,. Therefore, note also that a comparison 
with other published results makes sense only if 2, and the CSRO parameter are always 
determined in the same manner. 

3.1. Ni,*Tis0 alloy: a comparison between additive and non-additive HS models 

In order to investigate whether a NAHS model may be able to reproduce the CSRO present 
in Ni-Ti alloys, we started with the case x1 = 0.5. This is a convenient choice, since it 
avoids possible effects due to a difference in concentration of the two components. 
Moreover, the presence of CSRO in amorphous NiSOTiSO is experimentally well established 
(Enzo et a1 1988). 

As concerns the geometrical parameters R,, R1 and R2 were assumed to be coincident 
with the nearest-neighbour distances of the crystalline pure components, i.e., RNi = 
2.49 A and RTi = 2.89 A (Kittel 1976). Then, two alternative choices for RI2 were 
considered,i.e.,RI2 = 2.69A(A = O,additivemixture)andR,, = 2.56A(A = -0.048), 
a value suggested by experimental data (Enzo et a1 1988). 
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Figure 1. Comparison of Ashcroft-Langreth partial structure factors S,,(k) for Ni50Ti50 
relevant to an additive hard sphere (AHS) model and a non-additive (NAHS) one with 
Rlz < ( R I  + R,)/2,  at Iiquid-like and glass-like densities (left side = figure l(a);  right 
side = figure l (b))  The parameter values are given In table 1. In all cases, the full, dashed 
and dotted lines represent S , , ( k ) ,  S,,(k) and S,,(k), respectively 

To reach the high values relevant to glassy states, the mean total density was varied 
stepwise starting from a very low initial point and, consequently, a sequence of results 
was generated. Clearly, this procedure allows to follow also the possible evolution of 
CSRO from the liquid to the amorphous state. In a sense, this part of our theoretical 
analysis is similar to some experimental studies performed to answer the question 
whether the CSRO originates in the glass-forming process itself or in the liquid state. We 
recall, for instance, the work by Sakataetal(l981): by neutron diffractionmeasurements 
on liquid and amorphous CU66Ti34 alloys, these authors demonstrated that the CSRO is 
already present in the liquid phase and is enhanced on vitrification. 

Our numerical results for the S, (k )  and BT partial structure factors are plotted in 
figures 1 and 2, respectively. Here, a comparison is made between additive and non- 
additive HS models at three different densities, i.e., p = 0.04, 0.05 and 0.06 atoms/A3 
(in the following, dimensionless densities will be used, with p representing pR3).  

For both models, as the density increases, the amplitude of the oscillations in S, (k )  
becomes progressively larger, while the position of the first peak moves towards higher 
k values. The differences between additive and non-additive mixtures are, however, 
evident (compare figure la  and b) .  Note that in the additive case, the  partial structure 
factors retain essentially the same qualitative characteristics with increasing p.  On the 
contrary, the corresponding functions of the NAHS system have a shape that exhibits a 
notable evolution and is very different from the additive one in the region to the left of 
the main peak. In particular, in S, , (k )  at p = 0.04 it is noteworthy the appearance of a 
shoulder, which becomes a true pre-peak in the interval k = 1.7-1.9 A-' when p =0.05, 
0.06. At the same time and nearly at the same position as the aforesaid pre-peak, a deep 
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Figure 2. Comparison of Bhatia-Thornton partial structure factors S,-,(k) relevant to an 
additive (left side = figure 2(a)) and a non-additive (right side = figure 2(b) )  HS model for 
NijOTijO, at liquid-like and glass-like densities. The parameter values are given in table 1. 
In all cases, the full, dashed and dotted lines represent Scc(k ) / (x lx2 ) ,  S,,(k) and SNc(k) ,  
respectively. 

negative minimum and a shoulder arise in S,,(k) and S,,(k), respectively. According to 
equation(8b), whichyieldsS,,(k)/(xIx2) = [S l , (k )  + S2,(k) - 2S12(k)]/2whenxl = 0.5, 
this behaviour of the functions Sii(k) generates a well defined peak in S, , (k) / (x lx2)  in 
the same region (figure 2b). The position of this peak in S,,(k) at a smaller k value than 
that corresponding to the first peak in S,,(k) may be explained as follows: in the 
alloy, in addition to the fundamental topological short-range order, there is a pseudo- 
periodicity A-B-A-B which is produced by the tendency for unlike atoms to be neigh- 
bours and involves a longer characteristic length than the topological first-neighbour 
distance (Sakata et ~11981) .  

These results show clearly that a NAHS model is able to exhibit concentration fluc- 
tuations strongly deviating from randomness, i.e., a true CSRO in liquid and amorphous 
Nij0Ti50 alloys. On the contrary, this effect is practically absent in the additive HS model 
(see figure 2(a) and compare also the values of the parameter aW reported in table 1). 

It is rather surprising to see how our naive choice of non-additive diameters R, works 
well. However, it is not good enough to produce a true pre-peak in S"(k), at least at the 
above-mentioned density values. In the best non-additive case ( p  = 0.06) only a small 
shoulder was obtained. In fact, the weighting factor of S,,(k)/(xlx2) in equation (6) is 
proportional to the square of the difference in the atomic scattering factors of the 
components and is rather small for this alloy. However, we did not attempt to search for 
a better choice for the parameters ( p ,  R1, R12,  R 2 ) .  In fact, a fit to experimental data is 
not very convenient in the case of NijoTijo glass, since only the total structure factor S"(k) 
is available (Enzo et a1 1988). 
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Table 1. Density dependence of the partial coordination numbers 2, and generalised CSRO 
parameter aw for Ni5"Ti5": comparison between additive and non-additive HS models. The 
closest approach distances R ,  and the density p are expressed in A and in atoms/A3, 
respectively. The non-additivity parameter A and the packing fraction 9 are dimensionless. 

0.04 0.41 5.25 5.98 6.59 -0.004 
0.05 0.52 5.25 6.04 6.80 -0.001 
0.06 0.62 5.26 6.14 7.13 0.004 

0.04 4.87 6.18 6.54 -0.040 
4.86 6.38 6.54 -0.056 
4.37 6.72 6.63 -0.100 

2.49 2.69 2.89 0.86 0.93 0 

2.49 2.56 2.89 0.86 0.89 -0.048 {::Mi 

Finally, it is also interesting to note that, at each density value, the height of the main 
peak in S, (k )  and S"(k) for the NAHS model is always smaller than that corresponding 
to the additive case. Presumably, this effect may be explained in terms of packing fraction 
q ,  defined as the ratio of the volume occupied by hard spheres to the total volume. In 
fact, it is easy to realise that, under the same values of the parameters p ,  RI  and R,, the 
model with negative non-additivity will always have a smaller packing fraction than the 
additive one, in consequence of the possible overlap of hard cores. We recall that for an 
additive HS mixture the packing fraction is simply given by 7 = (n/6)ZlplR;. Unfor- 
tunately, in presence of non-additivity, the volume occupied by hard spheres becomes 
dependent on the microscopic atomic configuration and it is not possible to obtain a 
simple exact expression for q .  

In passing, we recall that according to Cargill (1975) the packing fraction of most 
metallic glasses lies between 0.66 and 0.68 (note also that q is 0.74 for a FCC or HCP lattice 
and 0.68 for the BCC structure of single-component systems). 

3.2. Ni,oTi,o alloy: a comparison between the N A H S  model and experimental data 

Although interpretation of results in r-space is more physically understandable, we 
preferred to fit experimental data for the Ni40Ti60 glass directly in reciprocal space. 
In fact, owing to the finite range of accessible k-values, Fourier transformation of 
experimental data may introduce undesired spurious effects. 

The theoretical structure factors, obtained from our NAHS model within the PY 
approximation, were compared with the corresponding quantities measured and pub- 
lished by Ruppersberg et a1 (1980), Wagner and Lee (1980), Fukunaga et a1 (1984). As 
concerns the x-ray total structure factor S"(k), the data found in the first reference look 
more reliable in the region of the pre-peak in which we are interested. On the other 
hand, the third paper is of fundamental importance for us, since also the Bhatia- 
Thornton and Faber-Ziman partial structure factors are reported there (the Faber- 
Ziman functions can be converted easily into the AL ones). 

Performing a fit without having at our disposal any analytic theoretical expression is 
not a simple task. We adopted a 'trial and error' procedure to fit, first of all, the main 
peaks of all structure factors, varying the four independent parameters p, R1, R12, R2 
around realistic values. 

The total mean number densityp was estimated by means of the approximate relation 
p = xN,pN, + xT,pTl, where pN1 and pn refer to the crystalline pure components. Since 
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Figure 3. BT partial structure factors &(k) for the Ni,,Ti, glass: the dots are experimental 
data by Fukunaga et a1 (1984) and the full curve represents the theoretical results obtained 
from the NAHS model with (p ,  R I ,  R I Z ,  R,) = (0.065, 2.40, 2.45, 2.85). 

pN, = 0.0914 andp,, = 0.0566 (Kittel1976), it results that p = 0.07 for the Nid0Ti6" alloy. 
Accordingly, we explored the density range 0.06-0.07, with steps Ap = 0.001. 

As concerns the parameters R,, it is clear that there is no need to identify the effective 
HS diameters R, with the nearest-neighbour distances in the crystalline pure species or 
with those measured in the alloy. Nevertheless, we hoped to get a fit by using R, values 
not too far from the experimental ones. Therefore, we allowed R1, R2 and RI2 to be 
varied stepwise in the intervals (2.40,2.60), (2.75,3.00) and (2.40,2.60) A,  respectively 
(usually with steps ARl, = 0.05 A,  but sometimes with ARLI = 0.01 A). 

Although more than 50 cases were analysed, it was not possible to achieve a complete 
disentanglement of the dependence of the structure factors on each of the parameters 
(p ,  RI,  RI2, R2). Some qualitative trends are, however, worth reporting: 

(i) At  fixed R,, as the density increases, the position of the main peak in S,(k)  and, 
consequently, in S"(k) and S"(k) shifts towards higher k values; 

(ii) At  a fixed p ,  the position of the main peak in S,(k) is, to a first approximation, 
proportional to l/Rl,. 

(iii) The height of the maxima of the structure factors mentioned in item (i) is an 
increasing function of both p and R,. Presumably, it is related to the total packing 
fraction q. 

(iv) As already discussed in 9 3.1, the features of Scc(k)/(xlx2), which reveal the 
presence of CSRO, are essentially determined by the values of the geometrical variables 
R,, i.e., by the ratios R1/R2and R12/R2 (or, equivalently, R12/R1 and R,/R,). For agiven 
set of parameters p, R1 and R2, the height of the first peak becomes larger with increasing 
non-additivity (i.e., with lA1); at the same time, the maximum of S,,(k) decreases, 
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Figure 4. AL partial structure factors S, (k )  for the Ni,TiM, glass: the dots are experimental 
data by Fukunaga et a1 (1984) (we have converted Faber-Ziman functions to AL ones) 
and the full curves represent the theoretical results obtained from the NAHS model with 
( p ,  R I ,  Rlz ,  R2)  = (0.065, 2.40, 2.45, 2.85). 

presumably as a consequence of the lowering of packing fraction. Moreover, at fixed 
R,, the peaks in S, , - (k) / (x1x2)  become more pronounced with increasing p. 

We started from the choice (p ,  R,, R12, R2)  = (0.06,2.50,2.55,2.90), which 
coincides practically with the last case considered for the Ni50Ti50 alloy, but at a different 
composition. With respect to the experimental data, the resulting theoretical S"(k) 
exhibits a shift toward the origin and a less intense pre-peak. To correct these short- 
comings, it was necessary to increase the density [item (i)] and, at the same time, we 
reduced suitably the values of all R, [item (ii)], mainly to avoid too large packing fractions 
and consequently too high main peaks in the structure factors [item (iii)]. 

One of our best sets of results corresponds to the choice (p ,  R,, R I 2 ,  R2) = (0.065, 
2.40,2.45,2.85). The relevant BT and AL partial structure factors, together with S"(k), 
are plotted in figures 3 , 4  and 5 ,  respectively. For a comparison with experiment, data 
by Fukunaga et a1 (1984) were used in the first two figures, but we preferred the S"(k) 
given by Ruppersberg et a1 (1980) for figure 5 ,  since it exhibits a better definite pre-peak. 

A good overall agreement between theory and experiment is evident, mainly in the 
region before and around the first peak of the structure factors. First of all, it is to be 
noted that the NAHS model is really able to exhibit a marked pre-peak in S"(k) .  In the 
inset of figure 5 we plot also an even better pre-peak, obtained with another good choice 
ofparameters,i.e., (p ,  R,,  R12, R 2 )  = (0.065,2.40,2.50,2.85). Thisshowshowvarying 
only R12,  in the direction of decreasing non-additivity, allows a further improvement in 
the shape of the pre-peak to be obtained. Moreover, with these new parameter values, 
the maximum of S c , ( k ) / ( x l x 2 )  is reduced and a better agreement with the corresponding 
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Figure 5. Total x-ray structure factor F ( k )  for the Ni40Ti60 glass: the dots are experimental 
data by Ruppersberg et a1 (1980) and the full curve represents the theoretical results 
obtained from the NAHS model with ( p ,  R I ,  R,2r R,) = (0.065, 2.40, 2.45, 2.85). 
In the inset, the dashed curve corresponds to the NAHS results relevant to the choice ( p ,  
R I ,  R lz ,  R 2 )  = (0.065, 2.40, 2.50, 2.85). 

experimental data is achieved. Unfortunately, at the same time, the first peak in SNN(k) 
becomes higher, according to item (iv), and the maximum of S"(k) passes from 3.8 to 
4.4. In this case our BT structure factors are, in the region of their first peak, very similar 
to those obtained for the same alloy by Hafner and Pasture1 (1985) through a more 
complex thermodynamic variational approach, based on a symmetric HSY reference 
system. 

However, apart from the uncertainty of the fitting procedure for the HS diameters 
R,, a difference in the first peak height between experimental and theoretical SNN(k) 
and S"(k) may also be due to a combination of other causes: experimental normalisation 
corrections, resolution of the measurement apparatus and the fact that the PY approxi- 
mation tends to overestimate the amplitude of the first peak in SLj(k) .  

At this point, to discuss the region beyond the first peak of the structure factors, let 
us start with some general observations. It is well known from numerical results and 
analytical calculations (Hansen and Schiff 1973, Greenwood 1980) that one can relate 
the asymptotic decay and the phases of the SV(k)  to the steepness of the potential: the 
steeper the repulsive interaction, the slower is the decay to their asymptotic limit. In 
addition, there will be a dephasing of the oscillations such that the peaks after the first 
will appear shifted toward larger k values, with increasing the repulsiveness of the 
potential. For a particular model, Copestake et a1 (1983) provided further evidence that 
using potentials with soft repulsive cores may produce weaker and broader maxima in 
all the structure factors and even rather flat regions in Scc(k)/(x1x2). Then it is rewarding 
to find that most of the discrepancies between our results and the experimental ones can 
be accounted almost completely in terms of these systematic trends. 

The only difference that is not explained is in the second peak of S,,(k) and S"(k). 
In fact, the experimental pattern exhibits a second maximum that is clearly split into a 
strong subpeak and a weak one (at k = 4.95 A-' and k = 5.70 A-', respectively, while 
the first maximum is located at k = 2.90 A-'). Unfortunately, we were not able to 
reproduce such a behaviour of S"(k) by means of the NAHS model, within reasonable 
variations of the HS diameters. 

As concerns the partial RDFS, our theoretical results exhibit a second peak splitting 
only in gZ2(r)  (with subpeaks at r = 2RI2 and r = 2R2, respectively). However, some 
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Table 2. Amorphous Ni4TiM): comparison of our best theoretical NAHS results for Z ,  and 
a, with experimental data. (a ) ,  ( b )  and (c) refer, respectively, to the works by Fukunaga 
et a1 (1984), Ruppersberg et a1 (1980) and Wagner and Lee (1980). Rigorously, the 
experimental a, taken from Ruppersberg et af corresponds to the Warren-Cowley CSRO 
parameter. 

0.064 2.55 7.69 8.39 
2.40 2.45 2.85 0.84 0.86 -0.067 0.065 2.54 7.08 8.39 

0.066 2.44 7.79 8.44 

0.064 2.72 7.74 8.26 r 0.066 2.61 7.90 8.33 
2.40 2.50 2.85 0.84 0.88 -0.048 0.065 2.64 7.81 7.41 

experimental 
( U )  2.63 2.60 3.01 0.87 0.86 -0.078 0.070 2.27 7.91 8.05 

(c) 2.5 2.58 2.92 0.86 0.88 -0.048 
(b)  2.6 

-0.110 
-0.072 
-0.120 

-0.108 
-0.150 
-0.121 

-0.1 
-0.21 

interesting results in the k-space will be reported in § 3.3 and a detailed discussion of 
these problems will be given in 9 4. 

Finally, table 2 gives the values of the partial coordination numbers 2, and CSRO 
parameter a, relevant to our best cases, together with the experimental ones. 

3.3.  Composition dependence of the CSRO 

Amorphous Ni-Ti alloys have traditionally been synthesised by liquid quenching in 
the composition range 25-40 at. % Ni (Polk et a1 1978). Neutron and/or x-ray scattering 
results for samples prepared by using this technique are available also in the case of 
Ni35Ti65 (Wagner et a1 1981), Ni26Ti74 (‘zero alloy’) and Ni33Ti67 glasses (Fukunaga et a1 
1981). To date, however, some new experimental methods, such as vapour quenching 
(Moine et a1 1985) and mechanical alloying (Schwarz et a1 1985), allow the synthesis 
of amorphous Ni,Til -, systems in a wider composition range, i.e., 0.3 S x S 0.7. 

Therefore, to study the composition dependence of the CSRO, the three cases x1 = 
0.3, 0.5 and 0.7 were analysed and compared. However, we did not attempt any fit 
to experimental data, but we tried to get only some qualitative prediction from the 
NAHS model. 

For sake of simplicity, it was assumed that the diameters R, are independent of 
the composition and coincident with those obtained from the fit for the Ni40Ti,o glass, 
i.e., (Rl, R12, R2)  = (2.40, 2.45, 2.85) A. As concerns the total number density p, we 
adopted the simple relationship p = C[xNipNi + (1 - xNi) pTi], where C is a rescaling 
constant chosen in such a way to yield p = 0.065 when xNi = 0.4. Within this approxi- 
mation, p increases linearly with Ni concentration and it comes out that p = 0.062, 
0.068 and 0.75 for xN, = 0.3, 0.5 and 0.7, respectively. 

The relevant results for the AL, BT and total structure factors are plotted in figures 
6, 7 and 8, respectively, so there is no need for long comments. In figure 6 it is worth 
noting the considerable evolution in the shape of Sl , (k )  and SZ2(k) as the composition 
is varied. In particular, with increasing Ni content, the intensity of the pre-peak in 
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Figure 6. Concentration dependence of the AL par- 
tial structure factors S J k )  relevant to a NAHS model 
for amorphous NixTi,-z alloys with (RI,  Rlz, R,) = 
(2.40, 2.45,2.85) A. The density values, dependent 
on the Ni concentration xl, are given in table 3. 

Figure 7. Same as in figure 6, but for the BT partial 
structure factors S,,(k). 
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Figure 8. Same as in figure 6 ,  but for the total x-ray structure factor S ( k ) .  

Sll(k) decreases, while a similar structure develops in S2,(k). Moreover, special 
attention should be paid to a weak second peak splitting which occurs in S,,(k) when 
x1 = 0.7 and in Sll(k) when x1 = 0.3, respectively. This trend is a further element in 
favour of the NAHS model; even if the subpeaks or shoulders are located at incorrect 
positions, the existence of such splittings in the k-space, supports the opinion that the 
model may really be a first step in the right direction. For sake of completeness, it is 
to be noted also that in the r-space a clear second peak splitting is visible in g22(r) for 
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Table 3. Concentration dependence of the partial coordination numbers Z,, and generalised 
CSRO parameter CY,+, relevant to a NAHS model for amorphous NixTil-x alloys with ( R I ,  
R12, R,) = (2.40, 2.45, 2.85) A. As described in the text, the density p is assumed, to a 
first approximation, to be a linear function of the Ni concentration xl. 

0.3 0.062 1.38 7.63 8.74 -0.100 
0.5 0.068 3.96 6.86 6.86 -0.118 
0.7 0.075 7.36 4.01 3.08 -0.103 

x 1  = 0.3; with increasing Ni content, the height of the second component of the split 
peak decreases and the double structure is absent for x1 = 0.7. 

In figure 8, as x1 is varied from 0.3 to 0.7, the position of the first peak of S"(k) 
moves towards larger k values. It is interesting that this shift, which corresponds semi- 
quantitatively to the true experimental behaviour (Moine et a1 1985), is explained by 
the model simply in terms of density changes, without varying the diameters R,. 
Furthermore, the inset shows that, at least within our approximations, the prepeak 
tends to become a shoulder with increasing Ni concentration. 

Finally, the behaviour of the structural parameters 2, and aw with varying com- 
positions is shown in Table 3. 

4. Discussion 

Before concluding, we wish to comment on the three basic aspects of the present 
work, i.e., ( a )  the NAHS potential, (6) the Percus-Yevick approximation, and (c) the 
use of integral equations. We also discuss the problem of the second peak splitting of 
the S"(k). 

(a )  As concerns the NAHS potential, a first point of interest is the comparison 
between the NAHS model and the symmetric HSY one, which has been the most 
frequently used for reproducing CSRO in liquid metallic alloys (even for phase-sepa- 
rating mixtures). The convenience of the symmetric HSY model lies in the fact that the 
relevant conditions of equality of HS diameters and charge neutrality, with the com- 
bined use of the mean spherical approximation (MSA), allow a reduction of the three 
oz equations to two independent relations. This simplification then enables one to 
find an analytic solution. It is well known, however, that the aforesaid special symmetry 
conditions yield to a complete decoupling of the number density and concentration 
fluctuations, i.e., S,,-(k) = 0, which for systems with strong CSRO seems to be unre- 
alistic. Note that, on the contrary, the NAHS potential ensures the necessary coupling 
between density and concentration fluctuations and therefore, in a merely structural 
study, it could be preferable for its simplicity. It should be mentioned, however, that 
efficient numerical algorithms have recently been proposed to find MSA solutions also 
for asymmetric HSY mixtures (Arrieta et a1 1987, Pastore 1988). 

Clearly, the NAHS potential is only a first approximation and more realistic inter- 
actions are required to reduce the gap between theory and experiment. As already 
mentioned, it is reasonable to expect that even a simple softening of the core, for 
instance a passage to non-additive repulsive inverse-power potentials, could yield 
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some improvement on our results. Nevertheless, the NAHS model remains of great 
importance since, used in the context of thermodynamic perturbation theories for 
more realistic interactions, it can also serve as a better reference system than an 
additive HS mixture (Kahl and Hafner 1985, 1987). 

Both NAHS and HSY potentials could be considered as convenient reference systems 
to investigate CSRO effects in non-ideal alloys. The explicit presence of long-range 
interactions in the HSY case should not by itself be taken as an indication of a better 
modelling of the full Hamiltonian. The similarity of structural results obtained from 
HSY and NAHS in these systems indicates that the relevant information about CSRO is 
already contained in the sizes of the repulsive regions. This result supports the point 
of view, well established in the case of simple one-component liquids, that the 
main structural properties are fixed by the repulsive part of the potential, while 
thermodynamics needs a more detailed treatment of the interaction and the inclusion 
of the attractive part. Then, if we are interested in the structural properties only, the 
NAHS has the advantage of reducing the number of free parameters to the minimum. 

( b )  Our choice of the PY approximation was motivated by its simplicity and the 
success of its predictions for HS systems in the fluid phase. Moreover, for a first 
approximation model a high accuracy was unnecessary and, consequently, we were 
not excessively worried about the shortcomings of the PY closure. For instance, it is 
well known that, at high packing fractions, the first minimum of the PY g , ( r )  may 
sometimes go negative. In practice, we found that the introduction of negative non- 
additivity often reduces or eliminates this unphysical feature, probably because of the 
consequent lowering of the packing fraction (in our best result for the Ni40Ti60 alloy 
the first minima in the RDFs are very low but positive). 

However, one could always try to overcome, at least partly, this and other failures 
of the PY approximation, by using a different closure for the oz integral equations. 
Here we would mention only the thermodynamically self-consistent Rogers-Young 
closure, recently applied to a ‘soft-sphere’ model for glass-forming alloys (Bernu et a f  
1987), as well as the less known but efficient Martynov-Sarkisov approximation, 
already used also for NAHS mixtures (Ballone et a1 1986). 

(c) Finally, the validity of extending an integral equation approach of the equi- 
librium theory of liquids to the study of amorphous solid materials should be discussed. 
To this end, it would be instructive to compare our results with those obtained by 
different statistical mechanical routes, in particular by computer simulation methods 
(i.e., dense random packing algorithms, Monte Carlo procedures and molecular 
dynamics, MD) that have been employed successfully in structural investigations into 
mono- and multi-component amorphous systems. 

A comparison with dense random packed models is, however, difficult, since they 
often involve additional potential terms required for energy relaxations and their 
results may be strongly dependent on details of the packing algorithm, as recently 
shown for the CSRO parameter aw (Saw and Faber 1985, Saw and Schwarz 1985). 

On the other hand, we are aware of very few MD studies concerning specifically 
CSRO in binary alloys and using the Bhatia-Thornton formalism (for instance, the 
work by Jacucci et af (1985) on liquid Li4Pb and by Hafner and Pasture1 (1985) on 
liquid and amorphous Mg70Zn30). However, computer simulation ‘experiments’ have 
been performed extensively to study the metallic liquid-glass transition and the 
relevant results may be useful also to discuss the problem of the absence of a second 
peak splitting in our theoretical S”(k).  

As is well known, the experimentally evident presence of splittings or even 
shoulders in the second peak of the g , ( r )  and S”(k) has often been taken as a ‘signature’ 
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of the glassy state (Dixmier and Sadoc 1978), although there is no clear way to 
relate such features of static structural properties to the dynamic and thermodynamic 
behaviour, which only allow a meaningful distinction between a liquid and an amorph- 
ous solid. Now, it is to be noted that, when one compares these second peak 
substructures of the experimental RDFS with computer simulation and integral equation 
results, it is often evident that the integral equations systematically underestimate the 
phenomenon and sometimes do not reproduce the RDF splitting obtained, on the 
contrary, in the computer calculations. 

Unfortunately, the reason for such a discrepancy between integral equation 
approach and computer simulations is not completely clear and, at present, we can 
only suggest two possible causes. First, the existing closures for the oz equations can 
be seen as originated from different approximations to the higher-order, many-body7 
correlation functions in terms of pair correlations. These approximations might give 
a good description of the region around the first RDF peak (more important for S"(k) 
and the thermodynamic properties), but they can fail in the second peak region, 
where, in the case of two close second-neighbour shells, the effect of the three-body 
correlations is expected to be important. Second, according to a viewpoint expressed 
by other authors (Weeks 1977, Zerah and Hansen 1986, Bernu et a1 1987, Kambayashi 
and Hiwatari 1988), the integral equations of the liquid state theory, assuming homo- 
geneity and equilibrium of the system, presumably describe a hypothetical fully 
relaxed disordered structure realised by an infinitely slow quenching of the liquid. 
Consequently, the RDF predictions from integral equations may be different from 
those obtained by computer simulations of rapid quenching, which can produce true, 
non-equilibrium glassy states. 

At this point we stress, however, that one should separate the analysis of the shape 
of the gij(r)  from that of the S"(k) [or Sij(k)]. In fact, since the Fourier transform is a 
non-local mapping of the real space into the reciprocal space, it is not obvious that 
the second peak splitting in the RDFS should be related to a similar one in S"(k) or 
Sij(k) [compare, for instance, figure 5 (8) and figure 14 (15) of Weeks' (1977) paper, 
as well as figures 5 and 6 of Dixmier and Sadoc (1978)]. 

While RDF splittings have been analysed extensively (mainly for mono-atomic 
amorphous systems), to our knowledge a complete understanding of the second peak 
splitting in the experimental S"(k) is lacking and we could only try to interpret it as 
an 'interference' effect, coming out from the onset of a competition between two (or 
more) frequently repeated distances in real space (Hajdu 1980). In addition, the 
localisation of the effect at intermediate k values suggests the possibility that it could 
be due to some feature of the potential at small separations. If this would be the case, 
it would explain the absence of k-space splitting in our simplified HS model for the 
interaction. 

However, at present we are not able to exclude a discrepancy between computer 
simulation and integral equation results in this region of the k-space, like in the case 
of the gq(r). We believe that the question certainly deserves further investigation and 
a check of this point is presently under study. 

5. Conclusions 

First of all, we have demonstrated that a two-component hard-sphere model with 
negatively non-additive diameters can really reproduce the CSRO present in amorphous 
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(and liquid) binary mixtures with preferred hetero-coordination. In other words, the 
concentration fluctuations visible from the Bathia-Thornton structure factor &(k) 
and the consequent pre-peak present in the experimental Sx(k)  of Ni-Ti glasses can 
be explained entirely in geometrical terms (i.e., excluded volume effects), if a partial 
overlapping of unlike spheres is allowed. According to our model, a less pronounced 
CSRO is already present in the liquid phase and gradually develops in magnitude with 
increasing density. Very accurate diffraction studies on the onset of the prepeak as a 
function of the temperature could verify this point. 

We emphasise that the NAHS potential is proposed as a simple satisfactory model 
for the structure, but not for the thermodynamics, of alloys with weak or strong CSRO. 
An HS model for the structure is clearly less ambitious than any theory based on 
some modelling of the full interatomic interaction, but this limit of the model is, 
paradoxically, one of its more appealing features. The possibility of having a reasonable 
description of the structure, depending only on a limited set of parameters, allows 
an approximate decoupling between the problem of the structure and that of the 
thermodynamics. The usefulness of such a separation is clear when one realizes how 
difficult is a realistic and reliable determination of an interatomic potential for noa- 
simple metals. 

Another point to note is that, to our knowledge, this paper offers the first example 
of numerical solution of the oz integral equations for asymmetric NAHS systems with 
realistic parameter values for an amorphous solid. This means also that the possibility 
of using NAHS mixtures as a reference system in thermodynamic perturbation theories 
for more complex potentials is becoming more and more feasible. At present, some 
simple steps in this direction could already be allowed by the available numerical 
algorithms, even if general and complete analytic solutions for NAHS models are 
lacking. 

Finally, we have shown that an integral equation approach, which comes out from 
the liquid state theory and is less time-consuming than computer simulations, can 
reasonably be applied to amorphous systems, since it yields results in satisfactory 
overall agreement with the experimental data of Ni-Ti glasses. Even if one assumes 
that the integral equations describe an ideal ‘extrapolation’ of the stable fluid structure 
to higher densities, their results are instructive and should be considered as an 
indication of how the structure of an amorphous solid is similar to that of the 
supercooled liquid. 

In particular, we have also discussed the second peak splitting in the structure 
factors and work is in progress to investigate more deeply this interesting feature of 
amorphous materials. 
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